
Specification Mining For SoC Validation Using
Data Mining Techniques

Md Rubel Ahmed, Yuting Cao, Hao Zheng; Dept. of CSE, University of South Florida

RNYF

The SEES Lab, USF-Tampa

Abstract

The quality of an SoC validation depends on the quality
of specifications against which it has been tested. So
effective SoC validation requires well-documented
specifications. However, these specifications are often
incomplete, contain inconsistencies, or even may not
exist. In this work, we try to infer validation
specifications from the message flow of SoC execution
traces using traditional and custom data mining
techniques. Message flows govern how IP blocks in an
SoC design communicate with each other to realize
system-level functionality. Sequential pattern mining is
used along with domain specific optimization
mechanisms to make the mining process more efficient
and accurate. We also consider the soundness of our
approach throughout the work.

Problem Statement

Our proposed approach for specification mining is done
at two levels: On-chip fabric and Application.

Fig. 1: Specification Mining Framework

Mine flow specification such as CPU downstream
write/read etc. The fabric level specification must be
valid across different execution traces as they are
supposed to be implemented by the on-chip fabric. Here,
we define patterns as Sequences of events.

The base idea came from the hypothesis that General
execution patterns can be mined from example traces of
execution, which can provide correct specification for silicon
validation.
An SoC is a combination of reactive components that
works together to complete a set of tasks required by the
user. We characterize the patterns for mining as:
 Set of events
 Strong ordering rules among them
 In constant environment, every execution trace hold

these rule

Simulation
model under

debug
System
Flow

monitor

Simulation
Trace

t=e₁,e₂,..

Pre-silicon
Trace

Analysis

Trace
Interpretat

ion

Flow
execution

rule

Method

Fig. 2: Work flow of the proposed algorithm

Find rules of two events:
1. From the unique event list, take every possible pairs of two

different events.
2. Generate a projected trace for each pair from the input trace that

is consist of the events in the pair only. {e₁,e₁,e₂,e₂,e₁,e₂……..,e₁}
3. Find support for this pair or rule: find number of possible pairs

from the projected trace keeping them separated by clocks. Like;
{(e₁, e₂) :15, (e₁, e₃): 24 ,……, (en-1, en):7}

4. Find confidence/recall for each pair using standard confidence
calculation method.

{en-1, en : Confidence, Recall)}

Grow rule of more events using domain heuristic:
For a rule (e₁, e₂):
1. If it has confidence of 100%, find another rule (e₂, e₃) with

confidence of 100%, and create a new rule (e₁, e₂, e₃).
2. If it has recall of 100%, find another rule of (e₀, e₁) with recall of

100%, and create new rule (e₀, e₁, e₂).
3. To reduce search space further, apply following pruning strategy

for rule (e₁, e₂); e₁:{src¹:dest¹} and e₂:{src2:dest2} check if dest¹ =
src1. If this condition does not hold, discard these rules.

Complex patterns:
1. A complex patterns should to capture a complete execution flow
2. Special measures will be adopted to get discard false patterns
3. A balance between soundness and accuracy is a must

Input: Execution trace encoded in a prescribed form, T
Output: Set of patterns described in the upper section, P
Data-preparation:

1. Prepare message-event mapping database:
{1:{src¹:dest¹:metho𝑑𝑚},....., m:{sr𝑐𝑚:des𝑡𝑚:metho𝑑𝑙}}

2. Group events by clocks and prepare event database:
{{e₁,e₂,e₅},….{e₅}…..{e₆,e₂,e₂}}ϵT

3. Find unique symbols {S} and their frequency throughout
the trace. For example;
Unique Events = {e₁, e₂, ……., em}
Event_freq: {e₁: 23, e₂: 45, …….., em:46 }

Abstract Trace

Generate Rule of length 2

Combine Rules

Apply Heuristic

Complex patterns

Challenges
 False patterns
 Difficulties in branches
 Execution time
 Missing patterns
 Poor event correlation

Fig. 3: Branching in flows

10

2

27

17

19

21

x

Proposed Solution
 Mining from sliced trace: Improves event correlation,

reduces false pattern, finds missing branches
 Windowing techniques: Reduces false pattern

 Probabilistic branch growth: Reduces false pattern

2 2 3 4 4 5 5 1 53Samplei

Fig. 4: Trace scanning using fixed size window

2 3 7 12 10 14 5 9

7

12 10

5 9 13

9 13 10

Path that Satisfies Minimum confidence

 =

 = Event that decreases pattern confidence less than min. confidence

Fig. 4: Discarding branch based on minimum confidence

 Dynamic rule confidence adjustment: Reduces loosely
correlated patterns.

Rule Evaluation
Let P be the set of all valid patterns that are known, M be the set
of patterns mined using our method.
Soundness: P ⊆ M holds.

Accuracy:
|𝑷|

|𝑴|

We define Mp as the subset of patterns from M such that:
{ Mp | Mp ∈ P and Mp ∈ M }

And the soundness of M can be defined as:

Soundness (M_P) =
|𝑴𝒑|

|𝑷|

Result Analysis

Rule Length Permutation Method Proposed Method

2 1806 182

3 74046 115

4 2961840 290

5 115511760 495

6 4.38944688E+9 969

7 1.624095345E+11 1538

8 5.846743244E+12 3341

Mining sequential rule of larger length has always been a
challenging task, especially for concurrent systems. One of the
major problems in this task is exponential rule explosion. The no.
of rules we extract for different length shows the effectiveness of
our approach.

Table 1: Search space comparison between proposed approach and
permutation based approach

Please visit https://bit.ly/2EKpKvo for more information.

https://bit.ly/2EKpKvo

